Skip to main content

Text Analytics 2: Visualizing Natural Language Processing

Extend your knowledge of the core techniques of computational linguistics by working through case-studies and visualizing their results.

...

There is one session available:

2,051 already enrolled!
After a course session ends, it will be archivedOpens in a new tab.
Starts May 27
Ends Oct 18

Text Analytics 2: Visualizing Natural Language Processing

Extend your knowledge of the core techniques of computational linguistics by working through case-studies and visualizing their results.

Estimated 6 weeks
3–6 hours per week
Self-paced
Progress at your own speed
Free
Optional upgrade available

There is one session available:

After a course session ends, it will be archivedOpens in a new tab.
Starts May 27
Ends Oct 18

About this course

Skip About this course

__ _ Visualizing Natural Language Processing _ is the second course in the Text Analytics with Python professional certificate (or you can study it as a stand-alone course). Natural language processing (NLP) is only useful when its results are meaningful to humans. This second course continues by looking at how to make sense of our results using real-world visualizations.

How can we understand the incredible amount of knowledge that has been stored as text data? This course is a practical and scientific introduction to text analytics. That means you’ll learn how it works and why it works at the same time.

On the practical side, you’ll learn how to visualize and interpret the output of text analytics. You’ll learn how to create visualizations ranging from word clouds, heatmaps, and line plots to distribution plots, choropleth maps, and facet grids. You’ll work through real case-studies using jupyter notebooks and to visualize the results of machine learning in Python using packages like pandas, matplotlib, and seaborn.

On the scientific side, you’ll learn what it means to understand language computationally. How do word embeddings and topic models relate to human cognition? Artificial intelligence and humans don’t view language in the same way. You’ll see how both deep learning and human beings interact with the meaning that is encoded in language.

At a glance

What you'll learn

Skip What you'll learn
  1. Practice using document similarity and topic models to work with large data sets.
  2. Visualize and interpret text analytics, including statistical significance testing.
  3. Assess the scientific and ethical foundations of new applications for text analysis

Module 1. Text Similarity:

Learn how to use machine learning to find out which words and documents have similar meanings.

Module 2. Visualizing Text Analytics:

Learn how to explain a model using visualization and significance testing.

Module 3. Applying Text Analytics to New Fields:

Learn how to apply computational linguistics to new problems and new data sets.

About the instructors

Who can take this course?

Unfortunately, learners residing in one or more of the following countries or regions will not be able to register for this course: Iran, Cuba and the Crimea region of Ukraine. While edX has sought licenses from the U.S. Office of Foreign Assets Control (OFAC) to offer our courses to learners in these countries and regions, the licenses we have received are not broad enough to allow us to offer this course in all locations. edX truly regrets that U.S. sanctions prevent us from offering all of our courses to everyone, no matter where they live.

Interested in this course for your business or team?

Train your employees in the most in-demand topics, with edX for Business.